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Abstract

An analysis is presented for multicomponent-liquid–fuel vaporization in a general geometrical situation, e.g., a dense spray. Variable
transport properties and only Stefan flow are considered. The problem is separated, using a mass-flux potential function, into a one-
dimensional problem for the quasi-steady, gas-phase scalar properties and a three-dimensional problem for the mass-flux potential.
The theory predicts scalar gas-phase profiles and vaporization rates for any value of the Lewis number. Transient heat- and mass-dif-
fusion in the liquid interiors is considered with special attention given to the fast- and slow-diffusion limits. Eight droplets in a cubic array
are considered in the calculations with a blended liquid mixture of heptane, octane, and decane. Comparisons are made amongst the
results for the various liquid-diffusion models: transient behavior, the fast-vaporization limit, and the slow-vaporization limit.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In previous papers on single-component liquids [1–4],
liquid–fuel vaporization and burning for general configura-
tions, including dense droplet arrays and liquid films, has
been analyzed. Those works built upon the works by Lab-
owsky [5–7], Umemura et al. [8,9], and Brzustowski and co-
workers [10,11]. Labowsky [6,7] introduced the mass-flux
potential function (which we apply later), first transformed
the field equation to Laplace’s equation, and examined up
to nine droplets. He used the method of images. In a series
of papers, Imaoka and Sirignano explored and compared
different computational approaches [1], extended the capa-
bility to handle transient as well as quasi-steady cases [2,3],
calculated arrays as large as 1000 droplets [3], considered
effects of non-uniform initial droplet size and initial spacing
amongst droplets [2,3], demonstrated the proper procedure
for the averaging of the gas-phase transport properties, and
obtained correlations based on similarity variables [1,3]
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that can be used in lieu of detailed calculations in the
future.

Except for Sirignano [4], the above researches were lim-
ited to cases with unitary values of Lewis number. Sirig-
nano recently analyzed the case of many droplets and/or
liquid films with Fickian diffusion and non-unitary Lewis
numbers. The mass diffusivities differed according to the
diffusing species and varied with the spatial location.

In similar fashion to the above references, we will focus
here on situations with only Stefan convection and without
forced or natural convection. We assume that the Stefan
convection at the surface is sufficiently strong to cause
the gas velocity to be normal to the liquid–gas interface
at that surface. Chemical reactions will not be considered.
There will be N � 2 miscible components in the liquid-
phase, all of which produce vapors. In addition, oxygen
and nitrogen will be present in the gas with nitrogen con-
centration dominant amongst the N gas species. The Lewis
number will be allowed to vary over the field.

In our analysis, we will resolve both the gas-phase and
liquid-phase properties, balancing mass and energy fluxes
at the phase interfaces. So, this analysis and those cited
above fit the category of array theory but not the group
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Nomenclature

Latin letters

BM Spalding mass-transfer number
BH Spalding heat-transfer number
cp constant pressure specific heat
D diffusion coefficient
h specific enthalpy
L latent heat of vaporization
Leff effective latent heat of vaporization
Le Lewis number
_m mass vaporization rate
N number of droplets or mole number
_q magnitude of heat flux
r radial coordinate
R droplet radius or universal gas constant
T temperature
T b boiling temperature
~V mass-averaged velocity vector
W molecular weight
X mole fraction
Y mass fraction

Greek letters

a thermal diffusivity
� mass-flux fraction

f normalized radial coordinate
gA interactive-isolated vaporization ratio
k thermal conductivity
q density
/ potential function
U normalized potential function
n similarity parameter

Subscripts

1 ambient value
� mass-flux-averaged value
0 initial value
eff effective value
iso isolated-droplet
l liquid-phase
S surface value
lS liquid surface
n the nth species

Superscript

bar average over gas-phase
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theory category as these categories are defined by Sirignano
[12]. So, this work differs from studies such as the famous
work by Chiu et al. [13] in that the Nusselt and Sherwood
numbers for each droplet are not prescribed here but rather
are determined. This is the first analysis of multicompo-
nent-liquid vaporization using array theory.

2. Quasi-steady, gas-phase equations

Standard notation will be used. In respective order, q; ~V ,
and T represent density, vector velocity of the gas mixture,
and temperature; ~V n; Y n; and hn represent vector diffusion
velocity, mass fraction, and specific enthalpy, all for species
n; D; k; and cp represent coefficients for mass diffusivity,
thermal conductivity, and specific heat at constant pres-
sure. Other variables are defined as they are introduced.

The quasi-steady gas-phase conservation equations for
energy, mass, and species mass are given in Eqs. (1)–(9)
of Sirignano [4]. Here, we neglect the reaction terms and
the heats of formation in those equations. Fickian diffusion
is assumed. Since the gas mixture is dominated by nitrogen
gas, each Dn is the binary diffusion coefficient for that nth
species with nitrogen. The nitrogen mass fraction can be
determined from the other mass fractions knowing that
all mass fractions sum to unity. Radiation, kinetic energy
and viscous dissipation are neglected. The momentum
equation will be replaced by a uniform-pressure assump-
tion which is consistent with neglect of terms of order
Mach number squared and of order Mach number squared
divided by Reynolds number when compared to unity.

The mass-flux potential is used following Labowsky
[6,7], Umemura et al. [8,9], Imaoka and Sirignano [1–3].
Imaoka and Sirignano [2] have shown that an irrotational
velocity field and the alignment of the diffusive-flux vector
with or directly against the local velocity vector are suffi-
cient conditions for a mass-flux potential / to exist; i.e.,
q~V ¼ r/. This implies that gradients of the scalar proper-
ties are parallel locally with the mixture velocity ~V ; diffu-
sion velocity V n and mixture velocity are accordingly
aligned. With the liquid surface at a uniform temperature,
the gas velocity at the surface must be orthogonal to the
surface. This type of flow can be expected without forced
convection or natural convection and subsequent shear
flows. Consistent with the previous assumptions, the
mass-flux potential allows for a general solution to the
flow.

When the scalar gradients and velocity are parallel
locally, we can conveniently use the normalized mass-flux
fraction �n where q~V �n ¼ q~V Y n � qDnrY n. For the quasi-
steady, gas-phase behavior, the �n are constant along a
streamline. �n will be zero for the non-vaporizing oxygen
and nitrogen and a positive number exists for each of the
vaporizing species with

PN
n¼1�n ¼

PN�2
n¼1 �n ¼ 1. It is conve-

nient to define a mass-flux-weighted specific sensible
enthalpy h� and a mass-flux-weighted specific heat cp;� such
that
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h� ¼
XN

n¼1

�nhn ¼
XN�2

n¼1

�n

Z
cp;n dT ¼

Z XN�2

n¼1

�ncp;n

 !
dT

¼
Z

cp;� dT : ð1Þ

With known �n values, h� is a function only of temperature,
making it more convenient than the mass-weighted specific
sensible enthalpy h ¼

PN
n¼1Y nhn ¼ which varies with both

mass fractions and temperature. Mass-flux-weighted (and
mole-flux-weighted) enthalpy has been used for more than
one-half of a century in the transport, combustion, and
vaporizing-droplet literatures [14,15]. It was also used by
Law and Law [16] for their non-unitary-Lewis number, sin-
gle-droplet work. However, new importance for it is iden-
tified by Sirignano [4]. This enthalpy function allows the
proper (natural) definitions of Lewis number and averaged
transport properties across the field and the formation of a
constraint on the surface temperature and surface heat flux.

The boundary conditions at the liquid–gas interface for
the mass fluxes of the N � 2 vaporizing species become

q~V �n �~e ¼ ðq~V Y n � qDnrY nÞ �~e ¼ qð~V þ ~V nÞ �~eY n;

n ¼ 1; 2; . . . ;N � 2 ð2Þ

and, for the non-vaporizing oxygen and nitrogen,

ðq~V Y n � qDnrY nÞ �~e ¼ qð~V þ ~V nÞ �~eY n ¼ 0;

n ¼ N � 1;N ; ð3Þ

where ~e is the unit normal vector at the liquid–gas inter-
face. With the assumption that the velocity and the scalar
gradients at that interface are normal to the surface, Eqs.
(2) and (3) are consistent with the definition of �n.

3. Integration of the gas-phase equations

Define the quantity H such that q~V H ¼ q~V h� � krT . As
shown by Sirignano [4], H will not vary along a streamline.
With neglect of radiation, the energy-balance boundary
condition at the liquid–gas interface is

kðrT Þ �~e ¼ q~V �~eLþ ql ¼ q~V �~eLeff ; ð4Þ

where Leff ¼ Lþ _ql=ðq~V �~eÞ contains the effect of both the
latent heat L and the heat flux to the liquid interior _ql. With
the velocity and the scalar gradients at that interface nor-
mal to the surface, we can obtain that H ¼ h�;S � Leff ¼PN

n¼1�nhn;S � Leff , where the subscript S denotes the gas
property at the liquid–gas surface.

We can conclude from the definitions of �n, H, and /
that

q~V ¼ r/ ¼ krT
h� � H

¼ ðk=cp;�Þrh�
h� � H

¼ qDnrY n

Y n � �n
;

n ¼ 1; � � � ;N : ð5Þ

So, logarithmic forms naturally appear for h� and Y n. Also,
the scalar variables are one-dimensional, i.e., functions
only of /, consistent with the previous results of Imaoka
and Sirignano for Le ¼ 1. Assume the same scalar value ex-
ists at any point on the liquid–gas interface. Then, integrals
can readily be obtained for these scalars:

h� � H
h�;ref � H

¼ e

R /

/ref
d/0=ðk=cp;�Þ

;
Y n � �n

Y n;ref � �n
¼ e

R /

/ref
d/0=ðqDnÞ

: ð6Þ

Reference values are taken at the liquid–gas interface or
infinity. T1 and Y n;1 are given at infinity; for the vaporiz-
ing species, consider Y n;1 ¼ 0. The continuity equation is
replaced by

r2/ ¼ 0 ð7Þ

with the boundary conditions at infinity and at the droplet/
gas interface. /1 remains to be determined. / ¼ /S at the
liquid–gas interface will be conveniently chosen to be zero
which removes the arbitrariness introduced with the defini-
tion of the potential function. Note that the / ¼ /S ¼ 0
surface is not simply connected in the general case where
more than one droplet exists in the array.

Take the reference value at the liquid interface for the
vaporizing species so that

Y n � �n

Y n;S � �n
¼ e
R /

0
d/0=ðqDnÞ: ð8Þ

We can now determine /1 and allow normalization of the
potential function. Define

U ¼ /
/1

; qDn ¼
Z 1

0

dU0=ðqDnÞ
� ��1

;

k=cp;� ¼
Z 1

0

ðcp;�=kÞdU0=

� ��1

ð9Þ

for any integer value of n where 0 6 U 6 1 and the over-
line defines a spatially averaged value. Then, using Eq. (8)
at infinity, we obtain

/1 ¼ qDnln
�n

�n � Y n;S

� �
¼ qDnln½1þ BM;n�; ð10Þ

where the Spalding mass-transfer number for each vaporiz-
ing species is given by

BM;n ¼
Y n;S

�n � Y n;S
: ð11Þ

The value of the potential function at infinity is the integral
of the mass-flux (per unit area) over any streamline. /1 is
independent of n so that Eq. (10) implies N � 3 relation-
ships amongst the N � 2 values for the �n for vaporizing
species. Together with the condition that

PN�2
n¼1 �n ¼ 1, there

are N � 2 relations which determine the values of �n.
Now, from Eqs. (8)–(10), we obtain

Y n � �n

Y n;S � �n
¼ ½1þ BM;n�qDn

R U

0
dU0=ðqDnÞ: ð12Þ

For each vaporizing species, a phase-equilibrium constraint
at the liquid surface will prescribe Y n;S as a function of the
surface temperature T S. We will use for our calculations a



4762 W.A. Sirignano, G. Wu / International Journal of Heat and Mass Transfer 51 (2008) 4759–4774
Clausius–Clapeyron relation together with Raoult’s law
[12] so that

Y n;S ¼
W nX n;lS

PN
k¼1ðY k;S=W kÞ
p

eLn=RT b;n e�Ln=RT S ;

n ¼ 1; . . . ;N � 2; ð13Þ

where T b;n;W n; Ln, and X n;lS are the boiling temperature (a
function of pressure), molecular weight, latent heat of
vaporization, and liquid mole fraction at the surface for
vaporizing species n.

Once T S and X n;lS are known, the above solutions will
allow the determination of the gas-phase field properties
as a function of the mass-flux potential function. We will
proceed in this section to obtain those solutions. In subse-
quent sections, we will determine the mass-flux potential as
a function of position in space and will study the internal
transient heat- and mass-diffusion processes that constrain
the values of T S and X n;lS.

For the oxygen species, a reference value at infinity is
more convenient. Since �O2

¼ 0, we obtain from Eq. (6)

Y O2

Y O2;1
¼ e

R /

/1
d/0=ðqDO2

Þ ¼ e
/1
R U

1
dU0=ðqDO2

Þ
: ð14Þ

As mentioned above, the nitrogen mass fraction is calcu-
lated using global continuity, i.e.,

Y N2
¼ 1� Y O2

�
XN�2

n¼1

Y n: ð15Þ

Now, we can examine the temperature field using Eq. (6)
with the reference value at the liquid/gas interface.

Define

BH;� ¼
PN�2

n¼1 �n½hn;1 � hn;S�
Leff

¼ ½h�;1 � h�;S�
Leff

: ð16Þ

From Eqs. (6), (9), and (16), we obtain

/1 ¼ k=cp;�ln
½h�;1 � h�;S þ Leff �

Leff

¼ k=cp;�ln½1þ BH;��: ð17Þ

Then, Eq. (6) can be rewritten as

h� � h�;S þ Leff

Leff

¼ e
/1
R U

0
dU0=ðk=cp;�Þ

¼ e
k=cp;�ln½1þBH;��

R U

0
dU0=ðk=cp;�Þ

¼ ½1þ BH;��k=cp;�

R U

0
dU0=ðk=cp;�Þ

¼ e
qDn ln½1þBM;n�

R U

0
dU0=ðk=cp;�Þ

¼ ½1þ BM;n�qDn

R U

0
dU0=ðk=cp;�Þ: ð18Þ

Note that any value of n may be used be in Eq. (18) in
accordance with Eq. (10).

We define a new average Lewis number here for each
species diffusing through the nitrogen: Le�;n ¼ ðk=cp;�Þ=
ðqDnÞ. Realize that, because of the use of a mass-flux-
weighted specific heat rather than a mass-weighted specific
heat, the Le�;n here is different from the Lewis number pre-
sented in other literature, except for the case where species
specific heats have the same value. So, a unitary-Lewis
number situation with mass-weighted mixture properties
in the other literature need not be a unitary-Lewis number
situation with the mass-flux-weighted specific heat used
here.

For the purpose of calculations, specific enthalpies for
each species can be expressed as functions of temperature
using the NASA polynomials in the appendix of Ref.
[17]. Once the interface temperature T S, interface liquid
mole fraction X n;lS, and mass-flux fractions �n are known,
Eqs. (12)–(15) and (18) determine the gas-phase scalar
fields as functions of the potential function.
4. Constraint on the liquid surface temperature

From Eq. (18) and the definition of the average Lewis
number, we find that

½1þ BM;n�1=Le�;n ¼ 1þ BH;�: ð19Þ

Eq. (19) holds for any value of the index n (i.e., any vapor-
izing species) while the right-hand side does not vary with
n. So,

½1þ BM;j�1=Le�;j ¼ ½1þ BM;k�1=Le�;k : ð20Þ

This means that the particular function of mass-transfer
number and Lewis number is the same for any two values
j; k of the parameter n. Also, we can say that

½1þ BM;j� ¼ ½1þ BM;k�Le�;j=Le�;k ¼ ½1þ BM;k�qDk=qDj : ð21Þ

Obviously, if the mass diffusivity is the same for any two
species, their BM;n values are identical. For the case where
all gas-phase diffusivities for the vaporizing species are
equal, then all BM;n values are identical and Eqs. (11) and
(21) yield the N � 3 relations

�1=Y 1;S ¼ �2=Y 2;S ¼ � � � ¼ �N�2=Y N�2;S: ð22Þ

Given that
PN�2

k¼1 �k ¼ 1 and
PN

k¼1Y k;S ¼ 1, Eq. (22) yields

�n ¼
Y n;SPN�2

k¼1 Y k;S

; n ¼ 1; 2; . . . ;N � 2: ð23Þ

Furthermore, Eq. (19) can be recast using Eqs. (4) and (16)
as

Leff ¼ Lþ _ql

q~V �~e
¼ h�;1 � h�;S

BH;�

¼ h�;1 � h�;S
½1þ BM;n�1=Le�;n � 1

: ð24Þ

This equation can be considered as a boundary condition
at the liquid–gas interface for transient heating of the li-
quid. When conduction to the liquid interior ceases (i.e.,
ql ¼ 0), the relationship together with the phase-equilib-
rium relationship prescribes the wet-bulb liquid tempera-
ture, T S ¼ T wb.

In the case where specific heats are identical for all spe-
cies, including oxygen and nitrogen, we have h� ¼ h,
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h�;1 ¼ h1; h�;S ¼ hS, and Le� ¼ Le (the classical Lewis num-
ber). The result is

BH� ¼
h1 � hS

Leff

¼ BH; ð25Þ

where BH is the classical heat-transfer number proposed by
Spalding.

Remarkably, the liquid surface boundary conditions
given by Eqs. (13) and (24) are independent of the geomet-
rical configuration (e.g., shape of liquid surfaces or number
of droplets).

In the case where no heating of the liquid interior
occurs, Leff ¼ L and Eq. (19) becomes

Lþ
PN�2

k¼1 �k½hk;1 � hk;S�
L

¼ �n

�n � Y n;S

� �1=Le�;n

ð26Þ

for any value of n. This relationship determines, together
with the phase-equilibrium relations that relate Y n;S to T S

and the equations of state that relate hn to T, the value
for the surface temperature T S. This value, which is ex-
pected asymptotically in time after liquid heating ceases,
is named the wet-bulb temperature T wb.

5. Determination of the mass-flux potential

From Eqs. (7) and (9), and the selection of the arbitrary
constant, we have

r2U ¼ 0; US ¼ 0; U1 ¼ 1: ð27Þ

For a given geometrical description of the liquid surfaces, U
can be determined as a function of position in space. There
is no explicit dependence on liquid–fuel choice, transport
properties, and scalar boundary values; these parameters
only appear through the normalization factor. So, the solu-
tion for U will be identical to solutions obtained in the pre-
vious unitary-Lewis number studies of Imaoka and
Sirignano [1–3].

6. Determination of the vaporization rate

We will follow the approach developed in previous
papers [1–4]. The vaporization rate is equal to the mass-flux
leaving the liquid surface. So, integrating over all of the
liquid surfaces, we obtain the global vaporization rate.
With only spherical droplets, the non-dimensional vapori-
zation rate for the jth droplet is

gj ¼
_mj

_mj;iso

¼ qDn ln½1þ BM;n�
_mj;iso

Z
Sj

Z
rU �~edS

¼ 1

4pRj

Z
Sj

Z
rU �~edS; ð28Þ

where Rj and _mj;iso are the instantaneous droplet radius and
the instantaneous vaporization rate, respectively, for a
droplet of the same radius but isolated from other droplets.
Sj is the surface area of the jth droplet. It is known [12]
that, for an isolated spherical droplet, _mj;iso ¼ 4pqDnR
ln½1þ BM;n� ¼ 4pðk=cp;�ÞR lnð1þ BHf ;�Þ which has been
used above.

The isolated-droplet vaporization rate depends upon the
values of the Lewis number and transport properties. For
example, the value of qDn is directly affected by trans-
port-property values while the value of BM;n is indirectly
affected by the relationship between the liquid surface tem-
perature and transport properties.

Normalizations of lengths appearing in Eq. (7) will show
that the results for gj are independent of the choice of the ref-
erence length. This means that gj will depend only on length
ratios, e.g., droplet-diameter-to-droplet-spacing ratio, and
not on actual size. So, if all lengths are scaled upwards or
downwards in proportion, gj will not change in value.

The average non-dimensional vaporization rate for a
droplet array of N droplets can be found as gA ¼
ð
PN

j¼1gjÞ=N .
In these non-dimensional forms, the vaporization rates

gj and gA are independent of liquid–fuel choice, transport
properties, and scalar boundary conditions. They depend
only on geometrical configuration so that previous compu-
tational results can be employed. In particular, the compu-
tational correlation gðnÞ of Imaoka and Sirignano [1,3] can
be used. That is,

gA ¼ 1� 1

1þ 0:725671n0:971716
;

n ¼
4pV AN

3V l

h i1=3

½N 1=3 � 1�N 0:72
; ð29Þ

where V A; V l; and N are the array volume, total liquid vol-
ume, and droplet number, respectively. So, if only vapori-
zation rates are desired, it is not necessary to solve Eq. (27)
since Eq. (29) contains results from Eq. (27).

Eq. (29) and much of the previous formulation apply
only if every droplet has the same instantaneous surface
temperature. That assumption will not hold during tran-
sient heating of a large, closely-packed array where the
inner droplets are given heat protection by the outer drop-
lets. Our analysis here will exclude those cases where tem-
perature varies along the interfaces.

For a spherical droplet in a situation where all droplets
are equi-sized, it follows that

_R ¼ � gA

qlR
k

cp;�
lnð1þ BH;�Þ ¼ �

gA

qlR
qDn lnð1þ BM;nÞ: ð30Þ
7. Liquid heating and mixing

The heat and mass diffusivities in the liquid are much
smaller than the counterpart gas-phase values. So, the
gas-phase can be treated as quasi-steady although transient
effects and time-derivative terms must be considered for the
liquid. Spherically symmetric diffusion in the droplets will
be an approximation. We will consider the liquid-phase
properties to be constant throughout the liquid and that
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all droplets have the same instantaneous size, temperature,
and composition. This will have implications about the
droplet-array configuration. First, we will discuss a general
situation of transient behavior where heat and mass-diffu-
sion times droplet lifetimes are of the same order of magni-
tude. Then, in later subsections, we consider special
asymptotic cases where one characteristic time can be con-
sidered small compared to another characteristic time.

7.1. Transient behavior

The governing equations for liquid-phase diffusion are

oT l

ot
¼ 1

qlclr2

o klr2 oT l

or

� �
or

;
oY l;n

ot
¼ 1

r2

o Dl;nr2 oY l;n

or

� �
or

: ð31Þ

cl; q; kl, and Dl;n are specific heat, density, thermal diffusiv-
ity, and mass diffusivity in the liquid-phase. r is the radial
position in a droplet.

Note that some controversy exists about the proper
form of the mass-diffusion equation for multicomponent
liquids. There are questions about the proper formulation
of the diffusion velocity and its relationship to the gradi-
ent(s) of partial density or molar concentration. So, Eq.
(31) should be viewed as an approximation. Note further
that no advective term is included which implies that all
components are approximated to have the same density.
Otherwise, mass-diffusion would be accompanied by a
change in total density, implying mean mass motion.

The interface is regressing into the liquid due to vapor-
ization. So, these equations are part of a moving-boundary
problem. A transformation to a fixed-boundary problem is
desirable and will now be made. Define f ¼ r=RðtÞ where
RðtÞ is the instantaneous droplet radius. Then, following
established methods [12], the liquid-phase diffusion equa-
tions transform to

oT l

ot
¼ al

R2

o2T l

of2
þ 2al

R2f
þ f _R

R

� �
oT l

of
þ 1

qlclR2

okl

of
oT l

of
ð32Þ

and

oY l;n

ot
¼ Dl;n

R2

o2Y l;n

of2
þ 2Dl;n

R2f
þ f _R

R

� �
oY l;n

of
þ 1

R2

oDl;n

of
oY l;n

of
:

ð33Þ
Initial conditions, symmetry boundary conditions at the
droplet center, and interface boundary conditions on these
equations are

T lðf; t ¼ 0Þ ¼ T l0;
oT l

of
ðf ¼ 0; tÞ ¼ 0;

Y l;nðf; t ¼ 0Þ ¼ Y l;n0;
oY l;n

of
ðf ¼ 0; tÞ ¼ 0;

kl

oT l

of
ðf ¼ 1; tÞ ¼ �qlR _R

PN�2
k¼1 �kðhk;1 � hk;SÞ
ð1þ BM;nÞ1=Le�;n � 1

�
XN�2

k¼1

�kLk�
" #

;

�n ¼ Y l;nðf ¼ 1; tÞ þ Dl;n

R _R

oY l;n

of
ðf ¼ 1; tÞ: ð34Þ
The last two conditions above apply at the interface which
is a fixed point in f space. The fifth condition is a conse-
quence of Eq. (24); and the final condition reflects the fact
the total vaporization rate of species n is the sum of an
advective flux (in a reference frame fixed to the regressing
surface) and a diffusive-flux.

Eqs. (11), (13), and (21), together with the relationPN�2
k¼1 �k ¼ 1, yield the mass-flux fractions �n as functions

of temperature and liquid mole fractions at the surface.
Note that, when all mass diffusivities are identical, Eq.
(22) replaces Eq. (21). Furthermore, (32)–(34), together
with X l;n ¼ ½Y l;n=W n�=½

PN�2
k¼1 ðY l;k=W kÞ� describe the mole

fractions and temperature inside the liquid (including sur-
face values) as functions of the �n values. So, together, these
equations form a system which can be solved to give the
results for a general case with a transient liquid-phase
and a quasi-steady gas-phase.

We will specialize now with two limiting cases: very fast-
vaporization and very slow-vaporization.
7.2. Fast-vaporization limit

Consider now a situation where the regression rate of
the interface _R is much greater than both the time for
heat-diffusion and the time for mass-diffusion across the
droplet: i.e., R _R=al � 1 and R _R=Dl;n � 1. As explained by
Sirignano [12], thin quasi-steady layers for thermal and
mass-diffusion form in the liquid adjacent to the surface
in this limit. There are diffusive-convective and diffusive-
advective balances in these layers. The result is that, from
the thermal balance,we find that

Leff ¼ Lþ cl½T l;S � T l0� ¼ Lþ cl½T S � T l0�: ð35Þ

For the mass balance, we have that the mass-flux fractions
must proportion according to the bulk mass fraction. That
is,

�n ¼ Y l;n0; n ¼ 1; . . . ;N � 2: ð36Þ

Now, Eq. (19) can be recast as

Lþ cl½T S � T l0� þ
PN�2

k¼1 Y l;k0½hk;1 � hk;S�
Lþ cl½T S � T l0�

¼ Y l;n0

Y l;n0 � Y n;S

� �1=Le�;n

; n ¼ 1; . . . ;N � 2; ð37Þ

where any value of n may be used. This equation may be
regarded as a constraint on the interface temperature T S

which can be employed to determine that temperature.
Then, if all gas-phase mass diffusivities are identical, Eq.

(23) yields that

Y n;SPN�2
k¼1 Y k;S

¼ Y l;n0; n ¼ 1; . . . ;N � 2: ð38Þ
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Combining Eq. (38) with (13), we obtain

Y l;n0 ¼
W nX l;n;S

PN
k¼1ðY k;S=W kÞ

p
PN�2

k¼1 Y k;S

eLn=RT b;n e�Ln=RT S ;

n ¼ 1; . . . ;N � 2: ð39Þ

Now, the above N � 2 relations will yield the following
N � 3 relations after common quantities are eliminated:

X l;n;S ¼ X l;1;S

eL1=RT b;1 e�L1=RT S

eLn=RT b;n e�Ln=RT S

W 1Y l;n0

W nY l;10

;

n ¼ 2; . . . ;N � 2: ð40Þ

These equations together with
PN�2

k¼1 X l;k;S ¼ 1 form N � 2
linear relations that yield the X l;n;S values. They can be
solved by an iteration process. A value of T S is guessed.
Use Eq. (40) to obtain the X l;n;S values. Once X l;n;S and
T S are known, Eq. (13) together with

PN
k¼1Y k;S ¼ 1 and a

statement about the mass ratio of oxygen to nitrogen at
the interface yields the gas mass fractions Y n;S at the inter-
face. Note that, since the gas-phase mass diffusivities were
taken to be identical, the mass ratio of oxygen to nitrogen
is identical throughout the field to the imposed ratio at
infinity. Now, use Eq. (37) to obtain the next value of tem-
perature T S. Cycle through these steps until converged
solutions result.

7.3. Slow-vaporization limit

In this limit, the times for liquid-phase heat and mass-
diffusion are very short compared to the droplet lifetime.
Therefore, we approximate that temperature T l and con-
centrations X l;n are instantaneously uniform across the
liquid although time-varying. We will simplify our task
by assuming that all gas-phase diffusivities are equal. The
values of �n and Y n;S are given as functions of T l and X l;n

by Eqs. (13) and (23) together with the condition thatPN
k¼1Y k;S ¼ 1 and a statement about the mass ratio of oxy-

gen and nitrogen.
The liquid mole fractions X l;n ¼ Nn=N where N n and

N ¼
PN�2

k¼1 Nk are the moles of liquid species n in a droplet
and the total number of moles in the liquid droplet, respec-
tively. From conservation of mass principles for the liquid
in the droplet, we can form the differential equations

� 1

4pR �n
W n

gA

dNn

dt
¼ k

cp;�
lnð1þ BH;�Þ ¼ qDn lnð1þ BM;nÞ;

n ¼ 1; . . . ;N � 2 ð41Þ
and
Table 1
Comparison and feasibility of various liquid-phase heating models

Case Uniform Y l;n Transient Y l;n

Uniform T l See Section 7.3 Eqs. (11), (13), (21) and
Conditions 3, 4, 6 of (34

Transient T l Not practical See Section 7.1
Quasi-steady T l Not practical Not practical
� 1

4pR
PN�2

k¼1
�k

W k

h i
gA

dN
dt
¼ k

cp;�
lnð1þ BH;�Þ

¼ qDn lnð1þ BM;nÞ: ð42Þ

So, prescription of initial values for R;Nn; and N allows
simultaneous integration of the first-order ordinary differ-
ential Eqs. (30), (41), and (42).

The energy-balance for a uniform droplet temperature
can be obtained using Eq. (34) which yields

dT l

dt
¼ � 3 _R

clR

PN�2
k¼1 �kðhk;1 � hk;SÞ
ð1þ BM;nÞ1=Le�;n � 1

�
XN�2

k¼1

�kLk

" #
: ð43Þ

The prescription of an initial value for liquid temperature
allows the simultaneous solution of this first-order ordin-
ary differential equation with the above equations.

The diffusion of mass in common liquids is much
slower than the heat-diffusion; so, a decent approximation
can be achieved by replacing the differential Eq. (43) by
the relation (26) which yields the wet-bulb temperature.
That is, the time-varying composition of the liquid
will be the controlling factor in determining the liquid
temperature.

7.4. Other asymptotic behavior

Since the Schmidt number is an order of magnitude lar-
ger than the Prandtl number for common liquids, other
asymptotic situations can become of practical interest.
For example, a situation might arise where the temperature
is uniform or nearly uniform through the droplet interior
while spatial gradients in the liquid mole and mass frac-
tions still exist. The table indicates which combination of
equations would be used in various situations. As described
above for the liquid-phase, the thermal behavior or the
mixing behavior can be considered as one of three possible
situations: a nearly uniform but time-varying scalar field, a
transient field, or a quasi-steady behavior with a thin diffu-
sive layer near the interface. The various combinations of
these three cases for each scalar produce nine cases shown
in Table 1. Three cases are not practical because they imply
that mass-diffusion is faster than heat-diffusion in the
liquid. Three other cases have been discussed earlier in this
Section. There are three new combinations where the
slower mass-diffusion compared to heat-diffusion allows a
distinction from the cases discussed in the three previous
subsections. The governing equations for those situations
are listed in Table 1.
Quasi-steady Y l;n

(33);
); and (22) or (43)

Eqs. (36), (38)–(40) and (22) or (43)

Eq. (32); conditions 1, 2, 5 of 34, 19, and 35
See Section 7.2
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8. Computational results

The theory has been developed for a very general config-
uration and for an arbitrary number of species in the
liquid-phase. Here, for the sample calculations, we choose
an eight-droplet array with triple symmetry; in particular,
the droplets are at the corners of an abstract cube so spac-
ing between droplets is uniform. The liquid droplets have
the same initial size; initial temperature; and initial compo-
sition, a blend of heptane, octane, and decane. Droplet
spacing is ten times the initial droplet radius. Ambient pres-
sure is one atmosphere. Ambient temperatures and liquid-
phase mixture ratios will be varied.

In the calculation, data and equations for thermody-
namic and transport properties are given in the literature
[17–19]. The droplets vaporize in the air where nitrogen
dominates, so the mass diffusivities in the gas-phase are
determined as the binary diffusivities of each species in
nitrogen which vary both in space and time. In the liquid-
phase, there is no species that dominates, and the mass dif-
fusivity of one species is determined by weighting its binary
mass diffusivities specifically in other two species based on
their relative mass fraction. The binary diffusivities in the
liquid-phase are given by semi-empirical equations.

The scalar properties in the gas-phase are solved in
terms of normalized mass-flux potential U which varies
from 0 to 1. A grid size of 0.01 in U is sufficiently small.
The errors of integration (evaluated as the changes of aver-
age gas-phase scalars when the grid side reduces to half) are
below 0.1%. During the transient behavior, the profile
changes for liquid-phase scalars are large near the surface;
so, smaller mesh size there is needed to calculate the liquid-
phase more accurately. A mesh size of 1/800 of the normal-
ized radius makes the integration errors (evaluated as the
deviation of the cumulative mass vaporized for one species
from the change of mass of this species in the liquid) below
1% and results in error decrease with time. The Forward-
Time-Center-Spacing (FTCS) scheme is used and the dis-
crete governing equations and boundary conditions in the
a

Fig. 1. Surface temperature and species mass fraction at the liquid surface in tr
temperature 2000 K, and initial mass fraction for heptane, octane and decane
liquid-phase are solved using a tridiagonal-matrix algo-
rithm. The forward-time scheme is also used for the slow-
vaporization limit. Five thousand time steps in the whole
lifetime of droplets are enough to ensure a satisfying
accuracy.

Fig. 1 shows the change of surface temperature and
mass fraction of heptane, octane and decane at the liquid
surface with time in transient behavior for both interactive
and isolated-droplets. The surface temperature rises shar-
ply at the beginning and then increases more and more
gently, before the droplet is gone. At the liquid surface,
the mass fraction of the most volatile component heptane
drops steadily for a long time and then remains nearly con-
stant due to the achieved balance between heptane’s vola-
tility and its large gradient of concentration in the liquid
near the surface. The isolated-droplets vaporize faster
and have greater rates of change of surface scalars than
interactive droplets. The values for surface scalars for inter-
active and isolated-droplets come very close to each other
near the end of the lifetime when the droplet spacing is
rather large compared to the droplet radius.

Addition of some non-volatile species to the liquid is
known to elevate the boiling point of the volatile species.
Based on Raoult’s law, the components’ boiling point in
the mixture is given by this equation: 1=T bi � 1=T bi;pure ¼
R � lnðX i;lÞ=Li. This relationship indicates that T bi can be
greater than T bi;pure; that is, the boiling point of a species
in a mixture will exceed its boiling point in pure form.
The boiling points of heptane, octane and decane in pure
form are 371.58 K, 398.83 K and 447.3 K specifically.
Fig. 2a shows that the actual boiling points of all the three
species are greater than their values in pure form. The
actual boiling points of heptane and octane at the liquid
surface increase with time due to their greater volatility
and subsequently decrease in their mole fractions near
the liquid surface, while the actual boiling point of decane
decreases due to its lower volatility and increase of mole
fraction near the liquid surface. This elevation of boiling
point means that the temperature at any location in the
b

ansient behavior for both interactive and isolated droplets, at the ambient
: 1/3, 1/3, 1/3.



Fig. 2. Boiling point during the transient behavior, at the ambient temperature 2000 K, and initial mass fraction for heptane, octane and decane: 1/3, 1/3,
1/3. (a) Actual boiling point at the surface. (b) Profiles of actual boiling point over liquid temperature for heptane at different times.

Fig. 3. Comparisons of BM;1 vs. ðR=R0Þ2 and ðR=R0Þ2 vs. t curves at different ambient temperature during the transient behavior, with identical initial mass
fraction for heptane, octane and decane.

Fig. 4. Normalized vaporization rate ðjdR2=dtj=ð2Dl;0Þ ¼ _m=ð4pqlRDl;0Þ, Dl;0 ¼ 4� 10�9 m2=SÞ and normalized radius squared during the transient
behavior in three cases: 1–2000 K (ambient temperature), 1/3, 1/3, 1/3 (initial mass fraction for heptane, octane and decane); 2–1000 K, 1/3, 1/3, 1/3; 3–
2000 K, 2/3, 1/6, 1/6.
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droplet will not exceed any component’s actual boiling
point at that location at any time. Thus, no interior gasifi-
cation will occur, even if the boiling temperature for a pure
substance is exceeded. Fig. 2b applies to the case of hep-
tane. It shows that the liquid temperature only exceeds hep-
tane’s boiling point in pure form after sometime.
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During the transient behavior, the increasing gA and
normally increasing BM;n and surface temperature tend to
make the rate of decrease of radius squared become larger
with time (i.e. tend to make ðR=R0Þ2 vs. t curve convex).
This is consistent with our knowledge of single-component
droplet arrays [1,12]. However, when the ambient temper-
ature is very low, BM;n may decrease with time due to a
strong distillation effect, and the ðR=R0Þ2 vs. t curve may
Fig. 5. Profiles of temperature and heptane mass fraction in the liquid-phase du
octane and decane.
consequently become concave (see the 350 K case in
Fig. 3).

Higher ambient temperature leads to faster vaporization
rate. Fig. 4 shows that the normalized vaporization rate at
ambient temperature 2000 K is nearly two times that at
1000 K. The mixture with greater fractions of the more vol-
atile components has faster radius squared rate of change
and thus has a shorter droplet lifetime. We also examined
ring the transient behavior, with identical initial mass fraction for heptane,
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transient heating and vaporization for an artificial liquid
with temporally constant properties that were averaged val-
ues for a mixture of heptane, octane and decane and com-
pare it with the actual mixture of the three species with
identical initial mass fraction. The artificial liquid with equal
weighting of the three components has faster radius squared
rate of change than the actual mixture, because the mass
Table 2
Parameters at equilibrium for pure octane at the ambient temperature 2000 K
vaporization rate divided by droplet radius and interaction-isolated rate ratio
squared (s=m2) when ðR=R0Þ2 ¼ 0:01

T S Y

T1 ¼ 2000 K Fast-vaporization limit 354.73 0
Transient behavior 357.77 0

T1 ¼ 3000 K Fast-vaporization limit 360.04 0
Transient behavior 362.77 0

The values for transient behavior are applied when ðR=R0Þ2 ¼ 0:1.

Fig. 6. Comparisons of normalized vaporization rate in the fast-vaporization
pure octane.

Fig. 7. Mass-flux fraction during the transient behavior compared to the fast-
and decane.
fractions of the more volatile components become smaller
than their initial value in the process of the vaporization of
the mixture and thus less weighting should be put on the
more volatile components in order to have a radius squared
rate of change closer to the value for the actual mixture.

During the transient behavior, there is heat conduction
and species diffusion inside the droplets. Fig. 5a–f shows
and 3000 K: surface temperature (K), octane mass fraction at gas surface,
(Kg/(m s)), effective latent heat (J/Kg) and time divided by initial radius

S _m=ðR � etaÞ Leff tlife � 10�7=R2
0

.5895 4.239E�3 4.317E+5 1.1715

.6224 4.669E�3 3.050E+5 1.1401

.6466 6.086E�3 4.436E+5 0.8160

.6755 6.580E�3 3.051E+5 0.7974

limit and transient behavior of both interactive and isolated-droplets, for

vaporization limit, with identical initial mass fraction for heptane, octane
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the profiles of interior temperature and heptane mass frac-
tion at different times in the droplet lifetime. These profiles
change with time while the changes of surface temperature
and surface composition become slower with time. As
liquid-phase heat conduction is much faster than mass-dif-
fusion, the temperature becomes nearly uniform and con-
stant after some time while the profiles of species mass
fraction still vary. Lower ambient temperature always leads
to more uniform profiles because it results in longer lifetime
and allows more time for heat and species diffusion in the
droplets. For 350 K ambient temperature, the temperature
profiles are nearly uniform all the time but the mass frac-
tion profiles are not; so, the slow-vaporization limit is not
strictly satisfied even at low ambient temperature 350 K.
For 3000 K ambient temperature, the temperature and
mass fraction profiles become steeper but still do not pro-
duce a sufficiently thin diffusion layer to satisfy strictly
the fast-vaporization limiting conditions.

In the single-component case, the droplets will reach a
fixed equilibrium point when surface temperature and fuel
Fig. 8. Comparison of normalized vaporization rate between the fast-
vaporization limit and transient behavior, at the ambient temperature
3000 K and identical initial mass fraction for heptane, octane and decane.

Fig. 9. Comparisons of normalized vaporization rate between the sl
mass fraction at the gas surface are kept constant. We cal-
culated parameters at equilibrium for the single-component
of octane in the fast-vaporization limit and transient
behavior case at both 2000 K and 3000 K ambient temper-
ature. In Table 2, T S, Y S and _m=ðR � etaÞ are greater, after
the initial start-up portion of the transient behavior with
high ambient temperature, than given by the formula for
the fast-vaporization limit. The transient behavior has
higher initial heating rate (i.e., higher initial Leff ) which
eventually results in higher liquid temperatures and thus
yields a lower effective latent heat Leff at later times.
Fig. 6 shows that the normalized vaporization rate for
the interactive droplet in the fast-vaporization limit gives
a lower vaporization rate after start-up.

In the multicomponent case, the mass-flux fraction of
each component equals its initial mass fraction in the
fast-vaporization limit. Fig. 7 shows the change of mass-
flux fraction with time during the transient behavior, com-
pared to the constant value in the fast-vaporization limit.
The curves at the ambient temperature 3000 K are closer
to the constant value 1/3 than at 2000 K, but still have
an apparent difference, because the fast-vaporization limit
is still not well approached as shown in Fig. 5e and f.
Fig. 8 shows the difference in the normalized vaporization
rate between the fast-vaporization limit and transient
behavior at the ambient temperature 3000 K.

The slow-vaporization limit is suitable when the ambient
temperature is low and vaporization rate is small compared
to heat conduction and species diffusion rates in the liquid-
phase. For a single liquid species, there is only heat conduc-
tion in the liquid-phase and the difference in the effective
latent heat leads to the difference of vaporization rate of
the slow-vaporization limit compared to that for the calcu-
lation of the transient behavior: at first, the slow-vaporiza-
tion model gives a smaller vaporization rate, later a greater
rate, and finally the rates become nearly identical. See the
results for pure liquid octane in Fig. 9a. When the ambient
temperature becomes very small, the difference in vaporiza-
tion rate for these two cases can be neglected (Fig. 9b) due
ow-vaporization limit and transient behavior, for single octane.
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to the small ratio of vaporization rate to heat conduction
rate.

For multicomponent droplets, there is also species diffu-
sion in the liquid-phase, and the infinitely fast species diffu-
sion rate in the slow-vaporization limit makes the more
volatile components vaporize primarily in the earlier per-
iod without much remaining for the rest compared to a
much more gentle change of the mass-flux fraction of each
component in the transient behavior calculation (Fig. 10d).
Because species diffusion rate is much smaller than heat
conduction rate in the liquid-phase, at a low temperature
350 K the ratio of vaporization rate to species diffusion
rate is still not sufficiently small and thus there are still
apparent differences in the curves of mass-flux fraction
for the slow-vaporization limit and transient behavior case
(Fig. 11d). At the ambient temperature 1000 K, the vapor-
ization rate is not small compared to both heat conduction
rate and species diffusion rate; so, the difference between
heat conduction and species diffusion jointly leads to a dif-
ference in the vaporization rate for the slow-vaporization
limit and transient behavior case (Fig. 10b). At the ambient
temperature 350 K, the vaporization rate is small com-
pared to heat conduction rate but not compared to species
Fig. 10. Comparisons between the slow-vaporization limit and transient beh
heptane, octane and decane: 1/3, 1/3, 1/3.
diffusion rate; so, the difference of species diffusion primar-
ily leads to the difference in the vaporization rate for the
slow-vaporization limit and transient behavior case
(Fig. 11b).

When the droplet spacing is changed from ten times the
initial droplet radius to five times the initial droplet radius,
the vaporization rate becomes smaller due to increased
interaction effect and subsequently smaller interactive-iso-
lated vaporization ratio (Fig. 12a and b). The values of sur-
face scalars vary monotonically with droplet spacing; see
Figs. 1 and 12c and d. The isolated-droplet case is the case
for infinite droplet spacing. The 10-radii-spacing values lie
between the isolated-droplet and five-radii-spacing cases.

Quantitative experimental results are not available for
vaporizing multicomponent droplet arrays. For isolated-
droplets, some experimental evidence is available for bi-
component blends but none exists for tri-component
blends. Randolph et al. [20] have studied binary blends of
hexadecane with other lighter alkanes. The experimental
results show that the more volatile component vaporizes
faster than the less volatile result which qualitatively agrees
with our computations. The computational results have a
good fit with the experimental results (see Fig. 13) if the
avior, at the ambient temperature 1000 K and initial mass fraction for



Fig. 11. Comparisons between the slow-vaporization limit and transient behavior, at the ambient temperature 350 K and initial mass fraction for heptane,
octane and decane: 1/3, 1/3, 1/3.
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liquid mass diffusivity is taken to have a value about twice
its original value. The bi-component calculations of Ran-
dolph et al. required a similar artificial adjustment to
match their experimental data. There are two possible
explanations for the need for adjustment. Since their exper-
iment involved some relative motion for the droplets, inter-
nal liquid circulation might have hastened the mixing rate
and effective diffusivity. Also, time counting in the experi-
ment did not begin until ignition so some shift of the exper-
imental data to the right would occur in an accurate time
plot for Fig. 13, creating a better fit with theory.

9. Concluding remarks

A generalized theory for multicomponent-liquid–fuel
vaporization in an arbitrary geometrical configuration
(e.g., arbitrary number of droplets with arbitrary sizes
and spacings) with a non-unitary Lewis number is obtained
under the assumptions of uniform liquid surface tempera-
ture and no forced or natural convection. It extends previ-
ous work by Sirignano [4] and Imaoka and Sirignano [1–3].
Solutions are obtained as functions of the mass-flux poten-
tial, recasting a three-dimensional scalar field as a one-
dimensional solution. The mass-flux potential is a solution
of Laplace’s equation in three dimensions. Mass-flux-
weighted enthalpies and specific heats are more useful than
mass-weighted quantities. A revised definition of the Lewis
number is required because of the mass-flux-weighted spe-
cific heats. The correct (i.e., natural) method for averaging
transport properties over the field is demonstrated to be
based upon an integration of the reciprocal value over
the mass-flux potential.

A useful integral relation (24) that constrains liquid sur-
face temperature and heat flux has been developed. This
can serve as a boundary condition on the liquid-phase
heat-diffusion equation. A new heat-transfer number BH�

is constructed as a modification of Spalding’s heat-transfer
number. A direct relation between the mass-transfer num-
ber BM and this new number only occurs when the modified
Lewis number has the same constant value throughout the
field. This relationship for LeffðT SÞ does not vary with
geometry but rather has a more universal character.



Fig. 12. Comparisons between cases of 10R0 and 5R0 droplet spacing during the transient behavior, with ambient temperature 2000 K and identical initial
mass fraction for heptane, octane and decane.

Fig. 13. Temporal variation of the average decane molar fractions for
mixtures of hexadecane and decane undergoing vaporization at about
1020 K.
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Unsteady diffusion in the liquid-phase have been ana-
lyzed. Various asymptotic cases have been studied where
heat- and mass-diffusion times become large or small com-
pared to a droplet lifetime or where one diffusion time
becomes short compared to the other. The uniform-sur-
face-temperature assumption is critical since a certain sym-
metry for all droplets is implied in the transient heating case.
Only for the quasi-steady case where a wet-bulb tempera-
ture has been reached, can the surface temperatures be iden-
tical for all droplets in any configuration. The mass-transfer
number BM;n, the fuel-vapor mass fractions at the interface
Y n;S, and the vaporization rate are shown to vary strongly
with surface temperature. BM;n and Y n;S do not directly
depend on transport properties. However, the temporal
behavior of surface temperature depends on transport prop-
erties; so, an indirect impact on BM;n and Y n;S will occur.

The Marangoni convection has not been considered in
this problem where combustion does not occur. Computa-
tions (Pages 63-4 of Ref. [12]) have shown that it can be
important when a flame is in the vicinity of the droplet.
With a flame surrounding an array of droplets, the flame
would be standing at a greater distance from the droplets;
so, the importance of surface tension for droplet group or
array burning remains an open question. If the surface ten-
sion were important, it would make the temperature along
the droplet surface more uniform, justifying an important
assumption in our analysis.
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Sample calculations are performed using eight droplets
in a cubic array with a liquid that is a blended mixture of
heptane, octane, and decane. Various ambient tempera-
tures and liquid-phase mixture ratios are examined. The
transport properties in both gas and liquid-phase are
variable. The changes of surface scalars, radius squared,
vaporization rate, gas-phase scalar profiles, and liquid-
phase scalar profiles are determined for the transient
behavior. Boiling points for each component are elevated
in the blend compared to the boiling temperatures for pure
substances. The boiling point for a substance in a liquid
blend is higher than its boiling point in pure form. Conse-
quently, liquid temperatures do exceed the pure form boil-
ing point of the most volatile substance in some portion of
the liquid after heating.

Comparisons are made amongst the results for the
various liquid-diffusion models: transient behavior, the
fast-vaporization limit, and the slow-vaporization limit.
Specifically, comparisons are made at high or low ambient
temperature. Some significant differences between the fast-
vaporization asymptotic results and the more accurate
transient diffusion computations occur even at ambient
temperatures as high as 3000 K. Similarly, some differ-
ences between the slow-vaporization asymptotic results
and the more accurate transient diffusion computations
are found even at ambient temperatures as low as 350 K.
For multicomponent droplets, the fast-vaporization-limit
model is very poor at predicting the vaporization rates
of individual liquid components, even at ambient temper-
atures of 3000 K. During the initial heating period, it
poorly predicts overall mass vaporization rate. At low
temperatures of 350 K, the slow-vaporization limit gives
acceptable predictions for the single-component case but
not for the multicomponent case. Droplet vaporization
and heating rates decreased as initial droplet spacing
decreased. The largest values occurred for the isolated-
droplet case.

Imaoka and Sirignano [3] examined the effects of non-
uniform initial droplet size and spacing for single-compo-
nent liquids. The results correlated well with the uniform
size and spacing results if certain averaged size and spacing
are used. It is suspected that a similar result can be found
for multicomponent liquid droplets; this can be viewed as
a candidate for future work.
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